Adaptive Millimeter-Wave Channel Estimation and Tracking

Mohammadreza Robaei*, Robert Akl*, Robin Chataut† and Utpal Kumar Dey*
*Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA
†Computer Science Department, Fitchburg State University, Fitchburg, MA, USA
*mohammadreza.robaei@unt.edu, *robert.akl@unt.edu, †rchataut@fitchburgstate.edu, †utpal-kumar.dey@unt.edu

Abstract—Computationally efficient channel estimation is critical to optimize the capacity of millimeter-wave communication network. For this, compressed-sensing has been recommended to estimate a few dominant channel parameters. However, it is challenging to extend compressed-sensing solutions to a continuous channel tracking due to the number of required measurements. In this paper, we propose efficient adaptive channel estimation and tracking for millimeter-wave communication with minimum communication overhead. We recommend characterizing the instantaneous rate of change of the millimeter-wave channel as a gradient of spectral overlap between channels. The significant channel variations are then detected locally by applying convergence in mean square sense to the resultant time sequence. If the channel experiences significant variation, then the multipath components are estimated directly using compressed-sensing. Otherwise, the channel parameters are updated using the channel tracking model. For this purpose, we introduce an efficient channel tracking model based on small-angle assumption. The proposed channel tracking method employs an autoregressive process to update the angle of departure and angle of arrival. We present numerical results to evaluate the proposed adaptive channel estimation and tracking method.

Index Terms—Millimeter-wave massive MIMO, channel tracking, channel estimation, channel variation rate, convergence in mean square

I. INTRODUCTION

Millimeter-wave and massive MIMO are the two technologies that can fulfill specifications of the IMT-2020 vision. Millimeter-wave communication can provide large bandwidth thanks to the high carrier frequency. On the other hand, massive MIMO has been proposed to increase the spectral efficiency of the network. Besides, massive MIMO is necessary to overcome the propagation challenges of the millimeter-wave communication by enabling directional communication.

Minimum Mean Square Error (MMSE) method is widely applied to estimate MIMO channels in the sub-6GHz band [2]. The number of required pilots signals to estimate millimeter-wave channel using MMSE is in the order of \(O(N_r N_t)\), where \(N_r\) and \(N_t\) are the transmitter and receiver antenna sizes. Since the \(N_t\) and \(N_r\) can be very large, MMSE is not an efficient way to estimate the large sparse channel. For sparse channel, it would be much more efficient computationally if we can estimate only the dominant components. For this purpose, compressed-sensing techniques have been recommended for millimeter-wave MIMO channel estimation [3], [4]. It has been shown that the Orthogonal Matching Pursuit (OMP) algorithm only needs \(O(s \ln (N_r N_t))\) measurements to estimate a signal with an \(s\) non-zero components.

The compressed-sensing-based channel estimation methods are applied to the block fading channel models [3]. In a block fading channel model, each channel realization is a random process taking place independent of the previous channel realizations. Hence, each channel realization needs to be estimated independently. As a result, continuous channel estimation introduces substantial pilot overhead.

If the channel varies smoothly, it is possible to leverage the channel’s prior knowledge to update the dominant components instead of estimation. We call this scheme channel tracking. The ultimate goal is to update the Angle of Departure (AoD) and Angle of Arrival (AoA) using the Kalman filter. Although the estimation performance is promising, the recommended algorithm shows severe degradation as the angular noise increases. Rodriguez et al. [6] have addressed channel tracking using the maximum-likelihood estimator, where each pair of AoD and AoA is calculated using a gradient of previously estimated estimated AoD and AoA pairs.

In [7], the linear model has been recommended considering the linear angular variation under spatial consistency. A similar approach has been adopted by NYUSIM [8] to simulate continuous millimeter-wave channel. The variant angle model can be used to update multipath components if the geometry of the road dictates the local direction of the user.

In [9], millimeter-wave channel tracking using side-channel has been recommended for vehicular communication. The recommended method solves the state-space problem to calculate the speed and position of User Terminal (UT). The initial state is obtained using on-board sensors, such as GPS.

In this paper, we utilize spatial consistency to generate continuous linear time-variant channel realizations. Under spatial consistency, the channel realizations that are sampled temporally close are correlated. It has been shown that the Correlation Matrix Distance (CMD) can measure this correlation by finding the spectral overlap between the channel realizations [10]. In [11], authors have examined CMD as a metric to measure the channel variation under spatial consistency. We have four contributions as in the following:

- The channel variation is defined as a spectral overlap between the channels, and it is measured using CMD.
Then, we propose to measure the instantaneous rate of change of the channel as the gradient of the CMD sequence.

- We employ Convergence in Means Square to detect local significant channel variation. If the channel shows significant variation, the multipath components are estimated using the OMP algorithm. Otherwise, the multipath components are updated through channel tracking.
- We model AoD and AoA as autoregressive processes to update antenna steering vectors for channel tracking.
- Computationally efficient channel tracking model using small-angle assumption has been introduced to update multipath components.

II. SPARSE PROBLEM FORMULATION

The channel transfer function \(H(t, f) \in \mathbb{C}^{N_t \times N_r} \) can be obtained as defined in (1) per cluster \(p \), per subpath \(l \), complex channel gain \(\alpha \), Doppler shift \(\nu \), and excess delay \(\tau \). All parameters are generated at random per cluster and per subpath. The transmitter and receiver steering vectors, \(\bar{a}_t(\theta) \) and \(\bar{a}_r(\varphi) \), are generated assuming ULA antennas with the separations of \(d_t \) and \(d_r \), as in (2) and (3), where \(\theta \) and \(\varphi \) are the AoD and AoA.

\[
H(t, f) = \sqrt{\frac{N_t N_r}{N}} \sum_{p=0}^{P-1} \sum_{l=0}^{L-1} \alpha_{p,l} e^{j2\pi \nu_p l t} e^{-j2\pi f \tau_p l} \times \bar{a}_t(\varphi_p,l) \bar{a}_t^H(\theta_p,l) \tag{1}
\]

\[
\bar{a}_t(\theta) = \left[1, e^{-j2\pi \frac{\nu_p}{\lambda} \sin(\theta)}, \cdots, e^{-j2\pi \frac{(N_t-1)\nu_p}{\lambda} \sin(\theta)} \right]^T \tag{2}
\]

\[
\bar{a}_r(\varphi) = \left[1, e^{-j2\pi \frac{\nu_p}{\lambda} \sin(\varphi)}, \cdots, e^{-j2\pi \frac{(N_r-1)\nu_p}{\lambda} \sin(\varphi)} \right]^T \tag{3}
\]

The transfer function \(H(t, f) \) can be mapped into its sparse representation in angular domain using virtual channel model [12] and Discrete Fourier Transform matrices \(A_t \) and \(A_r \) as represented in (11).

\[
H(t, f) = A_t H(t, a) A_r^H \tag{4}
\]

Both the transmitter and receiver are equipped with hybrid analog-digital beamforming architectures. At each frame \(m \), the transmitter sends pilot sequence \(\pi_m \). We can compute received signal at the frame \(m \) as

\[
\mathbf{y}_m(t, f) = W_m^H H(t, f) F_m \pi_m + W_m^H \mathbf{y}_m \tag{5}
\]

where \(F_m \in \mathbb{C}^{N_t \times N_{rf}} \) and \(W_m \in \mathbb{C}^{N_r \times N_{rf}} \) are the beamforming matrices. \(N_{rf} \) and \(N_{rf} \) are the number of RF chains at the transmitter and receiver, and \(\mathbf{y}_m \in \mathbb{C}^{N_{rf} \times 1} \) is the noise vector.

We can reshape channel matrix \(H(t, a) \) to a column vector \(\mathbf{h}_m(t, a) \in \mathbb{C}^{N_t N_r} \) using Kronecker vectorization. We also define \(\Phi_m = (\pi_m F_m^T \otimes W_m^H) \in \mathbb{C}^{N_{rf} N_t N_r} \) as a projection matrix, \(\Psi = (A_t^* \otimes A_r) \in \mathbb{C}^{N_t \times N_r \times N_{rf}} \) as a dictionary matrix, and \(\bar{e}_m = W_m^H \mathbf{y}_m \) as filtered noise. Then, we can rephrase (5) as

\[
\mathbf{y}_m = \Phi_m \Psi \mathbf{h}_m(t, a) + \bar{e}_m \tag{6}
\]

In (7), \(\Phi \) is the concatenated projection matrix and \(\mathbf{e} \) is the concatenated filtered noise.

\[
\mathbf{y} = \Phi \Psi \mathbf{h}_m(t, a) + \mathbf{e} \tag{7}
\]

III. METHODOLOGY

This section describes the proposed spectral overlap measurement, adaptive channel estimation-tracking, and convergence in mean square.

A. Correlation Matrix Distance

We may consider that there is a good correlation between channel realizations for channel coherent time. However, it is challenging to determine channel coherent time in practice. Instead, it would be helpful if we can measure channel variation with a time. We propose to leverage the correlation, i.e., spectral overlaps between the channel realization, to characterize the dynamics of the channel. It is possible to measure variation and instantaneous rate of variation by tracking the spectral similarities between two channel realizations.

CMD, represented with \(D \) in (8), measures the spectral overlap between two channel realizations and assigns a scalar between zero and one, where zero means channels are identical, and one means channels are at the maximum distance from each other. In (8), \(R(t) = H(t, a) H(t, a)^H \) is the receiver correlation matrix. Since the function of a random variable is also a random variable, CMD is a random variable that maps the \(H(t, a) \in \mathbb{C}^{N_t \times N_r} \) to an interval \([0, 1]\) \(\in \mathbb{R} \). The behavior of CMD sequence with a time provides information about channel’s spectral variation.

\[
D = 1 - \frac{\text{tr} \{ R(t) R(t + \Delta t) \}}{\| R(t) \|^2 \| R(t + \Delta t) \|^2} \tag{8}
\]

B. Channel Estimation

In this paper, OMP algorithm [13] has been employed to estimate channel parameters. OMP algorithm estimates the \(s \) non-zero elements in \(\mathbf{h}_m(t, a) \), iteratively. At each iteration, the residual of the received signal is projected on a transfer matrix \(\Phi \Psi \) to estimate the support, \(\omega \), corresponding to the maximum projection power. The number of iterations can be determined either by the number of non-zero elements in \(\mathbf{h}_m(t, a) \), or by expected residual error. The union of the estimated supports defines the support set \(\Omega = \{ \omega_1, \omega_2, \cdots, \omega_s \} \) corresponding to the location of non-zero elements in \(\mathbf{h}_m \), where \(|\Omega| = s \). Then, the channel gains can be obtained applying the least-square approximation to the set of columns selected from \(\Phi \Psi \) corresponding to \(\omega \in \Omega \).

The bandwidth of the channel is set to 50MHz, and it is divided into 64 subcarriers. We leverage common support assumption between subcarriers to apply majority voting and decrease the estimation error in low SNR regimes.

C. Channel Tracking

We aim to develop a channel tracking model that can utilize the prior knowledge about the channel to update AoD, AoA.
We modify the channel transfer function in (1) to obtain the evolved transfer function in (9)

\[
H(t + \Delta t, f) = \sqrt{N_t N_r} \sum_{p=0}^{P-1} \sum_{l=0}^{L-1} \alpha_{p,l}(t + \Delta t) \\
\times \pi_f(\varphi_{p,l} + \Delta \varphi_{p,l}) \pi_t(\theta_{p,l} + \Delta \theta_{p,l}) \\
\times e^{2\pi i \nu_p \nu_r} e^{-2\pi i f_p \nu_r}
\]

In (9) \(\Delta \theta_{p,l}\) and \(\Delta \varphi_{p,l}\) are path-wise AoD and AoA variations in a time interval of \(\Delta t\) and they reflect the changes in the subpaths due to the UT mobility or the dynamics of the environment. We propose the following proposition to update channel parameters by assuming \(\Delta \theta_{p,l}\) and \(\Delta \varphi_{p,l}\) are small.

Proposition Channel evolution considering the geometric variation of the AoD and AoA pairs can be obtained using

\[
H(t + \Delta t, f) = H(t, f) \circ \pi_{\Delta \varphi} \circ \pi_{\Delta \theta}^H (10)
\]

proof: See appendix

Proposition 1 updates channel transfer matrix with respect to small-angle assumption. For the channel realization \(n+1\) (\(n\) represents index of a sample), the \(\pi_{\Delta \varphi}\) and \(\pi_{\Delta \theta}\) are updated in the form of autoregressive process as

\[
\tilde{a}_{n+1} = \tilde{a}_n - \frac{1}{K} \sum_{k=0}^{K-1} \tilde{a}_{n-k} + \tilde{e}_n (11)
\]

where \(\tilde{a}_n\) represents the measurement noise. Substituting (10) in (4) gives the updated virtual channel.

D. Characterizing Instantaneous Rate of Change of Channel

The method we propose to detect a non-stationary change in the channel is based on the rate of channel’s local variation. One can expect that for the slow varying channel under spatial consistency the local spread of the \(D\) to be highly concentrated in the region of zero. We can then define the channel variation rate as a gradient of \(D\) as defined in (12). In (12), \(G_K\) is the gradient of the CMD sequence within a window of size \(K\).

\[
G_K = \nabla D (12)
\]

The signal \(G_K\) has a J-shaped distribution with a compact histogram concentrated around zero. One can characterize the channel variation rate examining the components in the tail of the distribution. For this purpose, we employ the convergence in mean square sense. Since convergence in mean square implies convergence in probability, it also implies convergence in distribution. However, unlike convergence in probability, convergence in mean square is sensitive to the components in the tail. The convergence in mean square sense is defined by

\[
\lim_{n \to \infty} E \left[|G_n - E[|G_n|]^2 \right] = 0 \hspace{1cm} \text{such that} \hspace{1cm} E \left[|G_n|^2 \right] < \infty.
\]

We define a weaker inequality in (13), which allows us to apply convergence in mean square to more realistic signals.

\[
\lim_{n \to \infty} E \left[|G_n - E[|G_n|]^2 \right] < \epsilon (13)
\]

While (13) holds locally for stationary channel with marginal channel variation, the violation of the inequality in

\[
\max |G_{n-k:n} - E[|G_{n-2k:n}|]^2 > (\gamma \sigma_{G_K})^2, \forall k < K (14)
\]

In (14), \(\sigma_{G_K}\) represents the spread of \(G_K\) within a window of \(K\). The variable, \(\gamma \geq 0\), is a threshold determines the saddle point to estimate or track the channel parameters. For \(\gamma = 0\), the algorithm decays to oracle channel estimation.

IV. NUMERICAL RESULTS

We assume that both the transmitter and the receiver are equipped with 16-element ULA antennas and 4 RF chains. The career frequency is 28GHz and the channel sampling rate is fixed to 1.2 samples per wavelength, equal to sampling interval of 9ms. In order to add significant non-stationary event, we added random blockage event recommended in [14] to a UT trajectory as shown in Fig. 1.

CMSV - Fig. 1 shows the blockage event detected by the convergence in mean square. It is shown the falling and rising edges of the blockage event are detected properly. In addition, channel variations due to other events such as antenna misalignment are detected along the UT trajectory. We have observed that the CMSV is inversely proportional to the SNR. As shown in Fig. 2, at low SNR regimes without significant non-stationary event, we have measured larger CMSV, which indicates violation of stationarity. On
other hand, for SNR ≥ 0, CMSV has been tightly concentrated around zero that points to a stationary behavior. We also have observed that CMSV can be as large as 0.9 at the blockage edges. The ratio of the tracked channels to the total number of channels is shown in Fig. 3 for $M = 70$. This ratio is directly proportional to the SNR and gets saturated for SNR ≥ 0. The reason is that the G_K has a J-shaped distribution concentrated at zero with decaying tail, as in the Fig. 4. The decaying slope of the tail is directly proportional to the SNR, i.e., the distribution of G_K is more compact around zero at the higher SNR regimes. Consistent with this result, Fig. 2 shows that CMSV approaches zero as the SNR increases. At low SNR values, CMSV diverges from the ϵ indicating that as the SNR decreases the non-stationarity increases.

NMSE - The reconstruction error has been evaluated using Normalized Mean Square Error (NMSE) defined by $NMSE [dB] = 10 \log_{10} \left(\frac{\|h_v - \hat{h}_v\|^2}{\|h_v\|^2} \right)$ for vectorized channel h_v and estimated/tracked channel \hat{h}_v. Fig. 5 shows the NMSE as a function of the SNR for $K = 2$, and $M = 70$. At 0dB and $\gamma = 1$, NMSE of the oracle OMP is -13.44dB, and NMSE of the proposed method is about -9.92dB. Also, channel tracking degrades the NMSE by about 3.5dB on average for $\gamma = 1$. We have observed that NMSE increases with time as the reconstruction error propagates for the successively tracked channels. In order to avoid accumulated error effect, channel estimation should be repeated in some well-defined intervals.

We expect NMSE to decrease as the number of measurement, M, increases. Fig. 6 shows that the NMSE increases approximately by about 1.74dB for $\gamma = 1$ when M is increased from 60 to 90.

SE - SE is defined by $SE = \log_2 \left[\det \left(I + \frac{\rho}{\sigma} HH^H \right) \right]$ is the crucial performance metric for wireless systems. It determines how efficiently the proposed algorithm utilizes the bandwidth. In SE calculation, σ is the noise components contains the contribution of additive noise and the channel tracking error, ρ is the power, and H is the channel matrix. Fig. 7 shows the SE normalized by number of RF chains for $\gamma = 1.75$ and $M = 70$ as a function of the SNR. We can observe that the tracking stage has a minimal effect on the SE. Fig. 8 shows SE ratio defined as $SE_{Ratio} = \frac{SE_{Tr}}{SE_{Oracl _Est}}$ as a function of SNR. According to the results, 87% of the SE achieved by oracle OMP is preserved by the proposed method.

Comparison with prior works - The OMP algorithm is widely used in the literature for millimeter-wave channel estimation. As shown in Fig. 5, the performance gap between the proposed method and oracle OMP algorithm increases as the SNR increases. This is mainly because the channel model in (10) only updates the AoD and AoA and disregards channel gain. However, at low SNR regimes, this gap decreases as the CMSV increases. This is due to the fact the number of estimated channels increases at the low SNR regimes and the
The proposed method achieves superior performance by minimizing the pilot overhead. The proposed method achieves approximately 0dB NMSE compared to -8.34dB we have measured. Here, the performance difference can be described by the different approaches used to update the AoD and AoA parameters.

V. CONCLUSION

In this paper, we proposed the adaptive channel estimation-tracking algorithm for continuous linear time-variant millimeter-wave massive MIMO. The dynamic behavior of the millimeter-wave channel is characterized using variation rate of the spectral overlap between successive channel realizations. We also proposed convergence in mean square to detect significant non-stationary events such as blockage. The results indicated that the proposed estimation-tracking algorithm achieves superior performance by minimizing the pilot overhead. The proposed method achieves NMSE as low as -13.44 at 0dB for 70 measurements. We also observed that at SNR as low as -10dB, 87% of the SE achieved by the oracle OMP has been preserved by the proposed method.

The proposed method has been evaluated under the spatial consistency where the mobility of the UT is limited to 3.6kps. Future works may examine and potentially optimize the proposed method for the scenarios with higher UT mobility and dual mobility. Potential applications include but not limited to multihop communication, and device-to-device communications.

VI. APPENDIX

Let’s rephrase evolved channel transfer matrix in (9) as

\[H(t + \Delta t, f) = \sqrt{P_f N_r} \sum_{p=0}^{N-1} \sum_{l=0}^{L-1} \beta_{p,l}(t + \Delta t) \times \pi_r(\theta_{p,l} + \Delta \theta_{p,l}) \pi_t^H(\phi_{p,l} + \Delta \phi_{p,l}) \]

(15)

where \(\beta_{p,l}(t + \Delta t) = \alpha_{p,l}(t + \Delta t)e^{j2\pi \nu_{p,l} t}e^{-j2\pi f \tau_{p,l}} \). Proposition 1 can be proved in two steps. In the first step, we need to prove that for all \(p \in \{1, 2, \ldots, N\} \) and \(l \in \{1, 2, \ldots, L\} \)

\[\pi_t(\theta + \Delta \theta) = \pi_t(\theta) \circ \pi_{\Delta \theta} \]

(16)

\[\pi_r(\phi + \Delta \phi) = \pi_r(\phi) \circ \pi_{\Delta \phi} \]

(17)

In the second step, we need to prove

\[(\pi_r(\phi) \circ \pi_{\Delta \phi}) (\pi_t(\theta) \circ \pi_{\Delta \theta})^H = (\pi_r(\phi) \pi_t^H(\theta)) \circ (\pi_{\Delta \phi} \pi_{\Delta \theta}^H) \]

(18)

Proof: Step 1: From (2), for a given angle \(\phi (\phi \text{ can be } \theta \text{ or } \phi) \), we will have

\[\pi(\phi + \Delta \phi) = [1, e^{-j2\pi \frac{\Delta \phi}{\Delta \phi}}, \ldots, e^{-j2\pi \frac{(N_r-1)\Delta \phi}{\Delta \phi}}] \]

(19)

For small \(\Delta \phi \), \(\cos(\Delta \phi) = 1 \) and \(\lim \frac{\sin(\Delta \phi)}{\Delta \phi} = 1 \). Hence, we have

\[\sin(\phi + \Delta \phi) = \sin(\phi) + \Delta \phi \cos(\phi) \]

(20)

Substituting (20) in (19)

\[\pi(\phi + \Delta \phi) = [1, e^{-j2\pi \frac{\Delta \phi}{\Delta \phi}}, \ldots, e^{-j2\pi \frac{(N_r-1)\Delta \phi}{\Delta \phi}}] \circ \]

\[[1, e^{-j2\pi \frac{\Delta \phi}{\Delta \phi}} \cos(\phi), \ldots, e^{-j2\pi \frac{(N_r-1)\Delta \phi}{\Delta \phi}} \cos(\phi)] \]

\[= \pi(\phi) \circ \pi_{\Delta \phi} \]

(21)

Step 2: To prove (18), we use the following properties of the Hadamard product in a given order: (1) \((A \circ B)C = AC \circ B \)

(2) \((A \circ B)^H = A^H \circ B^H \)

(3) \(A(B \circ C) = AB \circ C \)

and (4) \(A \circ B = B \circ A \).

\[(\pi_r(\phi) \circ \pi_{\Delta \phi}) (\pi_t(\theta) \circ \pi_{\Delta \theta})^H = \]

\[\pi_r(\phi) (\pi_t(\theta) \circ \pi_{\Delta \theta})^H \circ \pi_{\Delta \phi} \]

\[= \pi_r(\phi) (\pi_t(\theta))^H \circ \pi_{\Delta \phi} \circ \pi_{\Delta \phi} \]

\[= (\pi_r(\phi) \pi_t(\theta))^H \circ \pi_{\Delta \phi} \circ \pi_{\Delta \theta} \]

(22)
Substituting (22) into (15), we can prove (11) for \(\omega \in \Omega \) as in the forward:

\[
H(t + \Delta t, f) = \sqrt{N_f N_r} \sum_{p=0}^{N-1} \sum_{l=0}^{L-1} \beta_{p,l}(t + \Delta t) \times \pi_r(\phi_{p,l}) \pi_h \left(H_{\theta_{p,l}} \right) \circ \pi_{\Delta \varphi_{\theta_{p,l}}} \circ \pi_{\Delta \theta_{p,l}} = H(t, f) \circ \pi_{\Delta \varphi_{\theta_{p,l}}} \circ \pi_{\Delta \theta_{p,l}} \tag{23}
\]

ACKNOWLEDGMENT

Computational resources were provided by the University of North Texas High-Performance Computing Services, a division of the Research IT Services, University Information Technology, with additional support from UNT Office of Research and Economic Development.

REFERENCES

Mohammadreza Robaei was born in 1983 in Tabriz, East Azerbaijan, Iran. He received B.Sc. in electrical and Electronics from Tabriz Azad University, Iran, in 2006, and M.Sc. in Electrical Engineering from Middle East Technical University, Ankara, Turkey, in 2015. He received M.Sc. in Information Systems and Technology from the University of Michigan, Dearborn, US, in 2017. In 2018, he joined the Ph.D. program at the University of North Texas, Denton, TX, where he is currently working on millimeter-wave communication signal processing. His recent works focus on physical layer signal processing for millimeter-wave communication, including channel modeling, channel estimation, channel tracking, entropy, and characterizing non-stationary random processes.

Robert Akl received his B.S. in Computer Science and B.S. in Electrical Engineering in 1994, his M.S. in Electrical Engineering in 1996, and his D.Sc. in Electrical Engineering in 2000, all from Washington University in Saint Louis. He is currently a Tenured Associate Professor at the University of North Texas and a Senior Member of IEEE. He has designed, implemented, and optimized both hardware and software aspects of several wireless communication systems for cellular, Wi-Fi, and sensor networks.

Dr. Akl has broad expertise in wireless communication, Bluetooth, Cellular, Wi-Fi, VoIP telephony, computer architecture, and computer networks. He has been awarded many research grants by leading companies in the industry and the National Science Foundation. He has developed and taught over 100 courses in his field. Dr. Akl has received several awards and commendation for his work, including the 2008 IEEE Professionalism Award and was the winner of the 2010 Tech Titan of the Future Award.

Robin Chautat is an assistant professor in the Department of Computer Science at Fitchburg State University, Massachusetts, USA. He obtained his undergraduate degree in Electronics and Communication Engineering from Pulchowk Campus, Tribhuvan University, Nepal in 2014, and his Ph.D. in Computer Science and Engineering from the University of North Texas, Texas, USA, in 2020. Prior to completing his Ph.D., he was a senior software developer for Jhiklo Innovations, designing android apps for autistic children.

His research interests are in the areas of wireless communication and networks, 5G, 6G, and beyond networks, vehicular communication, smart cities, Internet of Things, wireless sensor networks, and network security. He has designed, implemented, and optimized several algorithms and hardware architectures for precoding, detection, user scheduling, channel estimation, and pilot contamination mitigation for massive MIMO systems for 5G and beyond networks. He has authored and co-authored several research articles. He is an active reviewer in several international scientific journals and conferences.

Utpal Kumar Dey received his B.Sc. in Computer Science and Engineering from Khulna University of Engineering and Technology, Khulna, Bangladesh in 2014. In 2016 he started working in Bangladesh University, Dhaka, Bangladesh as a Lecturer until his journey towards PhD. He joined University of North Texas, Texas, USA as a PhD candidate in 2017.

His research interests are wireless communication, 5G, vehicular communication and vehicular ad-hoc network. He has expertise in physical layer in vehicular ad-hoc network focused on efficient communication framework. His work includes modified physical layer in vehicular communication by using MIMO and other 5G technologies which increases the system throughput significantly. He has notable contribution in several research papers as an author and co-author.