A Study on the Cultivation Plan Service at the Preliminary production phase based on bigdata analysis

Heechang chunga, Dongil kimab, Sokpal Choabc

aAirpoit, abDongeui university, abcKoita, Korea

gyoonchung@naver.com, dikim@deu.ac.kr, spcho@hanmail.net

Abstract—This focuses on the Cultivation Plan Service at the preliminary production phase is critical in that it supports agricultural producers’ decision by providing related information such as predicted crop production or expected profits for consulting or other agricultural information when they plan to cultivate. This paper describes the reference architecture of the farming sector will benefit immensely from the implementation of farming data in farming contents repository which will serve as the knowledge base for the Cultivation Plan Service at the pre-production stage based on Bigdata analysis.

Keywords—Smart Farming, Agriculture Information Repository

I. INTRODUCTION

Current issues in the agro-industry of the world are as follows; First, the issue of manpower shortage has emerged due to rapid aging and feminization of manpower in farming areas. Second, a global food crisis occurred owing to failure of crops caused by global warming and extreme weather events. If the heat wave, drought, and sea level rise continue due to the climate change, it will lead to decreases in the crop productivity and consequently, increases in the number of impoverished populations by minimum 3.5 million up to 122 million by 2030. Third, increasing the food production is inevitable to meet the needs from the growing population. It is forecasted that the world population will increase from 7.6 billion in 2017 to 9.6 billion in 2050

The cultivation plan service model is required to derive necessary service features that support these missions. Therefore, the service model for the Cultivation Plan Service including reference architecture, service requirements, and related capabilities is described in the farming skill, farmer’s experiences and know how, etc. The information related to farming knowledge is supposed to current activities, farming product and from the experience of farmer on the field. The core component of the automation process for the smart farming is the creation of a data store which will be a repository for the information of the smart farming

Cultivation Plan Service of Smart farming provides the information about farming related to farming knowledge related to the control information of farming technology, farming skill, farmer experience and know-how. The Smart farming service is to provide the information of farm operation control of Farm as a Service and the farming about farming knowledge those are the farming technology, farming skill, farmer’s experiences and know how. The service information to be provided by Farming Service consists of farmer’s experiences in the field and information related to farming related activities. Through the smart farming service, the user can interact with the farming management function, farming content. This paper deals with the Cultivation Plan Service at the preliminary production phase stage.

II. CONCEPT OF CULTIVATION PLAN SERVICE AT THE PRELIMINARY PRODUCTION STAGE

In the preliminary production phase, as is often reported in media reports, price falls due to overproduction of agricultural products have been an important issue, and agricultural producers need services to provide weather data, previous agricultural market trend data, and big data analysis based on expert knowledge

The Smart Farming at the preliminary production phase is very critical because it aims to increase the final profit to the agricultural producer. Agricultural producers’ plan at the preliminary production phase the pre-production stage on crop type, seeding time, seeding area could cause success or failure after the cultivation. These decisions on cultivation plan can be based on agricultural information or cultivation plan consultation provided by service providers. Therefore, Cultivation Plan Service can help the agricultural producers in cultivation plan by providing agricultural information or cultivation plan consultation based on demand. This service could be provided in two ways namely; agriculture information and cultivation plan consultation, according to the role deciding the cultivation plan in response. Agricultural information is provided to service users when agricultural producers decide the cultivation plan. Or cultivation plan consultation is provided to service users when service providers decide the cultivation plan. These aspects of the Cultivation Plan Service are shown in Figure 1.

The cultivation plan consultation could be provided based on the big data analysis by collecting Measured Data, Log
Data, and Expertise Data via network. Big Data in the Agricultural Information Repository are analysed by applying available analysis methods. Then, the analysed results need to be provided to the service users. The following information from the Agricultural Information Repository can be provided to help service users to make decisions which are with Current status of the cultivation for the intended types of the crops, expected monthly and yearly weather and market status of the intended types of the crops.

In addition, service providers could provide cultivation plan consultation to service users on the following items those are the suggested types of the crop for seeding, the suggested time for seeding and suggested area for seeding. It also provides the expected amount of production from the minimum to the maximum and the expected profits from the minimum to the maximum.

The Big Data Analysis in the Figure 1 utilizes various types of data such as production cost, market status, and cultivation to analyse them and attain the expected profit or other information for cultivation plan consultation. It requires a model for prediction and calculation which inputs the data of production cost, market status, and cultivation, such as machine learning and regression process. The resulted output of the analysis will be used for cultivation plan consultation.

III. REFERENCE ARCHITECTURE FOR CULTIVATION PLAN SERVICE

It is composed of Data Analysis Function, and Plan Consulting Function for Cultivation Plan Service as shown in figure 2.

The Data Collection Function consist of Environment Functional Entity, Data Accumulation Functional Entity, and Knowhow Base Management Functional Entity. Environment Monitoring Functional Entity gathers and delivers the Measured Data including Cultivation Data such as temperature, humidity, and pH, etc. The Measured Data also includes Market Status and Production Cost. Data Accumulation Functional Entity gathers all information related to the past service processes, such as the past cultivation records, and final profits per varieties of crops, etc. to form Log Data. The knowhow Base Management Functional Entity gathers and delivers Expertise Data from experts, skilled service users or service user communities. All this gathered information are stored in the Agricultural Information Repository, then transferred to Data Analysis Function which analyses the gathered data and produces meaningful results that will help the service process. The Agricultural Information Repository and related surrounding functions are required to be assured for their security, especially for the data transferred and processed in these functions. The analysed results are transferred to Plan Consulting Function that interacts with the service users, Agricultural Producer, that inquires agricultural information or requests cultivation plan consultation via network owned by Network Provider to help the service users to make decisions. The Information Repository, the Data Analysis Function, and the Plan Consulting Function, which collects the data presented baseline configuration consists of the Data Collection Function
Entity which is responsible for predicting techniques such as machine learning, and a Calculation Functional Entity which performs calculations between the predicted and calculated values. These features enable service providers to provide information about various cultivation needs from service users and provide advice on farming plans such as selection of planting crops, timing of sowing, and area of cultivation in response to requests for services from service users. This provides the service model of the Cultivation Plan Service at the preliminary production phase. Therefore, agricultural data to be converged and managed based on ICT and IoT is key foundation that Agricultural data is the key foundation for Smart Farm models, in which a wide range of Information and Communication Technology (ICT) such as IoT and Big Data is converged to be operated and managed.

Every state in smart farm model from crop growing to selling requires appropriate data and it is very crucial to have a well-established service model for data collection and its provision. Given the fact that every single stage in Smart Farm models from crop growing to selling requires appropriate data, it is crucial to have a well-established service model for data collection and its provision.

That is smart farming service which assists farmers to develop proficiency in the management of farms. Smart farming service disseminates to the farmers for the farming contents and perform farmers problem back to service system for solution to help farmers make decision in farm management.

REFERENCES

1. Y. sfe, Smart Farming Education Service based on u-learning environment(TD 206, WP3/13)
2. Y. saic, Service model of the Agricultural Information based Convergence Service(TD254, WP3/13)
3. Y. smp, Service model for the pre-production stage on Smart Farming (TD253, WP3/13)
4. [ITU-T Y.2245] Y.farms, Framework and application model for risk mitigation service based on networks
5. [ITU-T Y.2241] Y.fual, Service framework to support web objects based ubiquitous self-directed learning
7. [ITU-T Y.2062] Framework of object-to-object communication for ubiquitous networking in NGN
8. [ITU-T Y.3600] Big data – Cloud computing based requirements and capabilities
9. [ITU-T Y.2060] Overview of the Internet of things,
12. ETSI TR 103 526 V1.1.1 (2018), System Reference document (SRdoc); Technical characteristics for Low Power Wide Area Networks Chip Spread Spectrum (LPWAN-CSS) operating in the UHF spectrum below 1 GHz.
13. ETSI TS 137 141 V15.8.0 (2019), Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; 5G; NR, E-UTRA, UTRA and GSM/EDGE; Multi-Standard Radio (MSR) Base Station (BS) conformance testing (3GPP TS 37.141 version 15.8.0 Release 15).
Heechang Chung received the B.S degree from Korea University, Korea in 1980, M.S and Ph.D degree from Ajou University, Korea in 1989 and 1997. He was a principal researcher at ISDN Center, ETRI from April 1980 to November 2000. He was a principal researcher at National Research Network Center, NIA from November 2000 to June 2014. Currently he is a professor of Telecommunication engineering, Dongeui University, Korea. He is a rapporteur in the ITU-T. His current research interests include future service management, service creation and standardization in ITU-T SG13.

Dong-Il Kim received the B.S., M.S. and Ph.D. degree in electronics information and communication engineering from Kwang-woon University, Korea, in 1981, 1983 and 1992, respectively. Since 1991, he has been at Dong-Eui University, Korea, where he is a professor at the information and communication engineering department. From 1983 to 1991, he was a general manager at switching research center in LG information and communication institute. He was a visiting researcher at standardization research center, ETRI from 1998 to 1999. He was designated as an IT Standard Expert on behalf of Korea by the KCC in 2002. He is an Editor in the ITU-T. His research interests are analysis of performance in a communication networks, protocols in wireless networks and standardization of ICT.

Sok Pal Cho, KOITA, and received the B.S from Kwang-woon University, Korea in 1976, the M.S. from Han-yang University in 1984, and the Ph.D.(1992) from the Kyung Hee University, Seoul Korea. He was a computer system engineer at Control Data Corp. since 1976. He was a senior researcher at R&D Center, Sam Sung Co., from April 1984 to February, 1994. He was an assistant professor in the Division of Information and Data Communication a Nam Seoul University, Korea in 1994. He was a professor of Telecommunication engineering and a vice president, Sungkyul University, Korea from March 1995 to Feb.,2014. He has been working as a Senior Research Fellow of koita. He is an Editor in the ITU-T. His research interests are analysis of performance in a communication networks, protocols in wireless networks, IoT, smart farm and standardization of ICT.