Dimension Dependent Effective Index Analysis for a Nano-scale Silicon Waveguide in Transverse Mode

A. T. C. Chen*, R. Petra*, K. S. K. Yeo* and M. Rakib Uddin**

* Electrical and Electronic Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei (UTB), Gadong, Brunei Darussalam
** The State University of New York Research Foundation, State University of New York Polytechnic Institute, Fuller Road, Albany, New York 12203

angi_teo236@hotmail.com, rafidah.petra@utb.edu.bn, kenneth.yeo@utb.edu.bn, mmrakib@yahoo.com

Abstract—In this paper, we propose and demonstrate the effect of effective index on silicon waveguide dimensions by using MODE solution. The objective of this paper is to study the effect of effective index which is influenced by waveguide width variations and waveguide height variations. The effect of effective index variations is presented by fixing the core height at 200nm and varying the core width from 300nm to 600nm and by fixing the core width at 500nm and varying core height from 150nm to 300nm for Transverse Electric (TE) and Transverse Magnetic (TM) MODE. With the simulation results, the thickness of the core width and core height are used for the determination of fundamental or higher order mode design. It is seen that higher effective index can be achieved as the core width and core height increases. The determination of fundamental or higher order mode design can be achieved by analyzing the graphs of effective indices for TE0, TM0, TE1 and TM1 modes at varied core height and width. Based on the analysis, it is concluded that fundamental order can only be achieved when the silicon core width is kept at a value of approximately 500nm and core height is kept at a value of less than 250nm. At a higher order mode, excess noise and losses can be introduced.

Keywords—Core Height, Core Width, Effective Index, Rib Waveguide and Silicon

Manuscript received on Jan. 10, 2021. This work is supported by UTB Scholarship Award and is a follow-up of the invited journal to the accepted & presented paper entitled “Transverse Electric (TE) and Transverse Magnetic (TM) Modes Dependent Effective Index Analysis for a Nano-scale Silicon Waveguide” of the 23rd International Conference on Advanced Communication Technology (ICACT2021).

Angie Teo Chen Chen is a Ph.D. student in the Department of Electrical and Electronic Engineering at University of Teknologi Brunei (UTB). (Corresponding author, phone: +673 8666643, fax: +673 2461035/6, email: angie_teo236@hotmail.com).

PG DR Rafidah Pg Hj Petra is currently a professor in the Department of Electrical and Electronic Engineering, Faculty of Engineering, at Universiti Teknologi Brunei (UTB), Brunei Darussalam. (Phone: +673 8757108, fax: +673 2461035/6, email: rafidah.petra@utb.edu.bn).

DR. Kenneth Siok Kiam Yeo is currently a professor in the Department of Electrical and Electronic Engineering, Faculty of Engineering, at University of Teknologi Brunei (UTB), Brunei Darussalam. (Phone: +673 8963788, fax: +673 2461035/6, email: kenneth.yeo@utb.edu.bn).

DR. M. Rakib Uddin is currently a Research Engineer at the State University of New York Polytechnic Institute, Albany, New York, USA. (Phone: +1 (404) 903-3312, fax: +673 2461035/6, email: mmrakib@yahoo.com).

I. INTRODUCTION

In recent past, silicon photonics has been one of the most fascinating topics in the communication sector where tremendous impacts have been realized by utilizing Silicon-On-Insulator (SOI) platform with very thin top layer of silicon [1-3].

Silicon waveguides based on Silicon-On-Insulator (SOI) platform have become the famous research field in the interest of their high capability in optoelectronic circuits. SOI technology is a good choice for optical waveguiding owing to its very high index contrast between silicon and silicon dioxide [4-6]. With high index contrast, the fabrication of dimensions of a few \(\mu m \times \mu m \) ultracompact silicon photonic devices and circuits can be achieved [7-9]. The most standard design of single mode SOI nanowire is that it has a cross section of approximately 500nm x 220nm [1]. It is well-known that effective index is one of the most significant characteristics in silicon waveguides especially in designing of optical system as it determines the propagation constant of optical field although, more essentially, in high-speed communication in which dispersion might be a limiting factor [4]. Usually, TE-polarization mode is used in this design as it has a stronger confinement of light compared to TM-polarization mode. Therefore, small bending radii can be achieved which lead to the fabrication of ultra-compact devices. Optical waveguide such as SOI based platform waveguide is acknowledged as the most extensive bridging element in optical integrated devices [10 and 11]. Therefore, a low loss optical waveguide is important in the design and fabrication of reliable and effective optical communication system. Low loss optical waveguides can be attained by applying or varying various parameters.

II. THEORY FOR RIB WAVEGUIDE

To the greatest extent, Silicon waveguides based on SOI platform can be easily built from SOI wafers as shown in Figure 1 by employing Complementary Metal-Oxide Semiconductor (CMOS) processes [12].

Copyright © 2021 GiRI (Global IT Research Institute)
A standardized SOI wafers are made up of a layer of buried oxide (BOX) centrally located to an ultra-thin top silicon layer and base silicon layer. The techniques used to design Silicon-based type waveguides are optical lithography and etching process [12]. In an SOI based-type waveguide, guiding of light will occur in the core of silicon in which it is separated from the silicon substrate by a layer of silicon oxide that acts as lower cladding [13]. An example of the commonly used waveguide is the rib waveguide in which the geometry of the waveguide is shown in Figure 2.

A cross section diagram of core part of the rib waveguide is shown in Figure 3. This paper is divided into two sections. In the first section, the core of the rib waveguide is designed to be in a fixed height of 200nm, a fixed rib height of 50nm and varied core width from 300nm to 600nm at the steps of 100nm. Next, the core of the rib waveguide is designed at a fixed core width of 500nm, a fixed rib height of 50nm and varied core height from 150nm to 300nm at the steps of 50nm.

IV. SIMULATION AND RESULTS ON VARIED WIDTH

In this work, the cross-section rib-type based waveguide is simulated by using MODE solution to generate the waveguide characteristics such as effective index for different polarization mode. The mode profile of core waveguide for the first section are shown in Figure 4 to Figure 7, respectively in which the height of the core is at a fixed value of 200nm with varied width from 300nm to 600nm.

Figures 8 to 11 show the graphs of effective index at a fixed height of 200nm with varied width from 300nm to 600nm. The characteristic performance in terms of effective index have been noticed at core width of 300nm, 400nm, 500nm and 600nm. From the results, it is clearly shown that as the wavelength increases, effective index also increases for the 4 modes. It is also noticed that core waveguide width variations will have impacts on effective index. Thus, based on the results, it is deduced that effective index increases gradually as we increased the width of the core.
Based on the graphs of the effective index for dimension variables, the value of the effective index at $\lambda = 1550\text{nm}$ for core height of 200 nm are deduced, tabulated, and shown in Table I. Accordance with the results, graphs of effective indices for 4 modes with respect to the varied core width to core height of 200nm are shown in Figure 12.

Based on the results shown in Figure 12, it is observed that as the silicon core width is made thicker, the effective index will increase. But if the silicon core width is made thinner, it is seen that effective index will eventually become smaller. Whereas for core height variations, it is noticed that thicker height will lead to higher effective index. As seen from the graph, it can be deduced that a width of 500nm is recommended when designing the waveguide. This is because when the width of the core is more than 450nm, it is observed that the effective index for higher order (TE1) mode gradually increases. Thus, the waveguide is said to be multimode and supports not only the fundamental mode but also higher order modes. At higher order mode, more noise and losses will be obtained. Thus, it is recommended that the silicon core width is set to be around 500nm to achieve a fundamental mode design which include TE0 and TM0 modes only.

In addition to that, the percentage change in effective index of each width with respect to 500nm for the TE0 mode is calculated and recorded in Table II as referred to Table I.

<table>
<thead>
<tr>
<th>Width of Core (nm)</th>
<th>Percentage Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>-16.3</td>
</tr>
<tr>
<td>400</td>
<td>-6.20</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>600</td>
<td>+3.88</td>
</tr>
</tbody>
</table>

TABLE I

<table>
<thead>
<tr>
<th>Width of the Core (nm)</th>
<th>Effective index at $\lambda = 1550\text{nm}$ for TE and TM Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TE0</td>
</tr>
<tr>
<td>300</td>
<td>2.16</td>
</tr>
<tr>
<td>400</td>
<td>2.42</td>
</tr>
<tr>
<td>500</td>
<td>2.58</td>
</tr>
<tr>
<td>600</td>
<td>2.68</td>
</tr>
</tbody>
</table>

Based on the results shown in Figure 12, it is observed that as the silicon core width is made thicker, the effective index will increase. But if the silicon core width is made thinner, it is seen that effective index will eventually become smaller. Whereas for core height variations, it is noticed that thicker height will lead to higher effective index. As seen from the graph, it can be deduced that a width of 500nm is recommended when designing the waveguide. This is because when the width of the core is more than 450nm, it is observed that the effective index for higher order (TE1) mode gradually increases. Thus, the waveguide is said to be multimode and supports not only the fundamental mode but also higher order modes. At higher order mode, more noise and losses will be obtained. Thus, it is recommended that the silicon core width is set to be around 500nm to achieve a fundamental mode design which include TE0 and TM0 modes only.

In addition to that, the percentage change in effective index of each width with respect to 500nm for the TE0 mode is calculated and recorded in Table II as referred to Table I.
In terms of effective index, higher effective index will lead to highest confinement of light and thus it is deduced that effective index is at the highest at core width of 600nm. In accordance with the analysis using the width of ±100nm and -200nm from 500nm, it can be deduced that it is better for the design to have a core height of between 400nm to 500nm rather than more than 500nm as the balanced of high effective index and single order mode are maintained.

V. SIMULATION AND RESULTS ON VARIED HEIGHT

The mode profile of core waveguide for the next section are shown in Figure 14 to Figure 17, respectively in which the core width is fixed at 500nm with variation of height from 150nm to 300nm.

From there on, with fixed core width of 500nm, the core height of the waveguide is varied and the performances of various angle on fundamental and higher order mode effective index are observed and analyzed. The characteristic performance in terms of effective index has been noticed at core height of 150nm, 200nm, 250nm and 300nm. Based on the results, it is noticeable that effective index increases as wavelength increases. Furthermore, it is deduced that effective index increases with increased height.
Based on the outcome results, summary of effective indices for TE0, TM0, TE1 and TM1 modes at fixed core width of 500nm over a range of core height dimensions is shown in Figure 22. Comparisons showing how polarization modes affect effective index as we varied core height from 150nm to 300nm are summarized, tabulated and shown in Table III.

TABLE III

EFFECTIVE INDEX AT WAVELENGTH OF 1550NM FOR CORE WIDTH OF 500NM WITH VARIED CORE HEIGHT

<table>
<thead>
<tr>
<th>Height of Core (nm)</th>
<th>Effective index at λ = 1550nm for TE and TM Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TE0</td>
</tr>
<tr>
<td>150</td>
<td>2.43</td>
</tr>
<tr>
<td>200</td>
<td>2.58</td>
</tr>
<tr>
<td>250</td>
<td>2.7</td>
</tr>
<tr>
<td>300</td>
<td>2.78</td>
</tr>
</tbody>
</table>

Fig. 22. Effective indices for TE0, TM0, TE1 and TM1 modes at core width of 500nm with height variation.

Based on the results shown in Figure 22, it is observed that effective index is inversely proportional to wavelength. Hence, as wavelength increases, effective index will decrease for all of the modes. In addition to that, with regards to core height, it is deduced that effective index increases with increased height.

From the simulation results shown, it is observed that as we increase the core height of the waveguide, the waveguide is said to be in higher order mode instead of fundamental mode only. It is also noticed that the effective index at fundamental mode is higher as compared to higher-order mode. Thus, it is deduced that the core height is recommended to be lesser than 250nm when designing waveguide as multi-order mode will come in if the core width is higher than 250nm. Higher-order mode will tend to introduce some excess loss and crosstalk, therefore only fundamental mode is preferred. In consequence, the dimension of the waveguide needs to be carefully designed to prevent the excitation of higher order mode.

Moreover, the percentage change in effective index of each height with respect to 250nm for the TE0 mode is calculated and recorded in Table IV as referred to Table III.

TABLE IV

PERCENTAGE CHANGE IN EFFECTIVE INDEX OF EACH HEIGHT WITH RESPECT TO 250NM FOR TE MODE

<table>
<thead>
<tr>
<th>Height of Core (nm)</th>
<th>Percentage Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>-10.0</td>
</tr>
<tr>
<td>200</td>
<td>-4.44</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>+2.96</td>
</tr>
</tbody>
</table>

Fig. 23. Percentage Change in effective index of each height with respect to 250nm for TE0 mode.

In terms of effective index, higher effective index will lead to highest confinement of light and thus it is deduced that effective index is the highest at core height of 300nm. Based on the analysis using the height of ± 50nm and -100nm from 250nm, it can be deduced that it is better for the design to have core height between 200nm to 250nm rather than more than 250nm as the balanced of high effective index and single order mode are maintained.

VI. CONCLUSION

The simulation and analysis of the performance of polarization modes for a nano-scale silicon rib waveguide with respect to the dimensions of the waveguide have been presented. The performances of the polarization modes (fundamental mode and higher order mode) are observed and analyzed by using effective index. The study and analysis of polarization modes is to avoid the excitation of higher order modes that can cause excess loss and crosstalk. From the results, it is worth noting that as core width and core height increases, effective index also increases. Thus, it is said that core width and core height is directly proportional to the effective index. From this analysis, it is concluded that silicon core width is recommended to be set at around 500nm and core height is recommended to be set at around 250nm in order to achieve a good compromise between effective index and polarizations. This is because as the core width and core width...
height are more than 500nm and 250nm, respectively, it is seen that higher order mode started to come in and caused additional losses and crosstalk. As a conclusion, the study of waveguide dimensions and polarization mode is important in the realization of novel and optical devices with optimized performance.

ACKNOWLEDGMENT

We would like to thank Universiti Teknologi Brunei (UTB) for financial support to carry on this research.

REFERENCES

A.T.C.Chen (M’21). Angie Teo Chen Chen was born in Brunei Darussalam on June 23, 1995. She received her BEng in electrical and electronic engineering from Universiti Teknologi Brunei, Brunei Darussalam in 2014. She is currently having her PhD degree in electrical and electronic engineering in Universiti Teknologi Brunei, Brunei Darussalam and started since 2019. She has three papers in international conference proceedings. She has presented her first paper in Brunei Darussalam for Brunei International Conference on Engineering and Technology (BICET) in 2018. In 2019, she had presented her second paper in Kuala Lumpur for 4th IEEE International Circuit and System Symposium (ICSyS). Her third paper is presented in South Korea for 22nd International Conference of Advanced Communications Technology in 2020. Her research focuses mainly on various nano-scale waveguide structure to see the device performance characteristics by applying waveguide design variations and characterize the device performance.

Ms. Chen is a member of IEEE. Ms. Chen got her BSc degree with first class honors and received Excellent Student Award from the Ministry of education, Brunei Darussalam. Ms. Chen received UTB Scholarship Award for her programme, PhD in electrical and electronic engineering.

Rafidah Petra received the B.Eng. degree Electrical & Electronic Engineering from Glasgow University, UK, under twinning programme with University Brunei Darussalam (UBD), in 2004. She received her master’s degree in Nanoelectronics & Nanotechnology, from the University of Southampton, UK, where she further her studies and obtained her PhD in Electronics and Electrical Engineering from the same University. Her major is in silicon nano-photonic technology for telecommunications where she specializes on the design, fabrication and characterization of nanoscale waveguide devices. Her expertise is in thin-film fabrication for devices at nanometer scale, for the application of solar cells and sensors for environmental sensing.

She is currently a Research Assistant at Universiti Teknologi Brunei (UTB), Bandar Seri Begawan, Brunei Darussalam. She has been working as an educator since she graduated from her bachelor’s degree, back in 2004 and progressively becomes an active academia, where she has been involved both in teaching and research.

She is a member of the IET and an active member for Centre for Innovative Engineering. She currently holds the position as deputy director for Corporate Communications Office, UTB.

Kenneth S. K. Yeo received the B.Eng. degree (with honours) in electronic and communication engineering and the Ph.D. degree from Birmingham University, Edgbaston, Birmingham, U.K., in 1996 and 2000, respectively. In 2009, he received the PG Cert in learning and teaching in higher education from University of East London, London, UK. He doctoral research concerned high-temperature superconducting microwave devices.

He is currently a Senior Assistant Professor at Universiti Teknologi Brunei (UTB), Bandar Seri Begawan, Brunei Darussalam. Prior to joining UTB, he was a Senior Lecturer at University of East London, London, UK for nearly 10 years. He has worked as a Principal RF Engineer at CryoSystems Ltd., Luton, U.K. between 2004 and 2006. He has spent more than 6 years at the University of Birmingham, as Research Fellow. From 2013 to 2017, he also served as External Link Tutor at Canterbury Christ Church University, Canterbury, Kent, UK while working at University of East London. In Mar 2016 and May 2017, he was also a Visiting Professor at Hangzhou Dianzi University, Hangzhou, China. Dr. Yeo is a qualify Chartered Engineer with Engineering Council, UK and a member of IET. He is also a Fellow of HEA, UK.

Dr M. Rakib Uddin was born in Bangladesh on February 18, 1978. He received his PhD degree in communication engineering from KAIST, Daejeon, Korea in 2010. He received his MSc in Electrical and Electronic Engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh in 2005 and BSc in Electrical and Electronic Engineering from Chittagong University of Engineering and Technology, Chittagong, Bangladesh in 2002. He is currently a Research Engineer at the State University of New York Polytechnic institute, Albany, New York, USA.

He worked as ASSOCIATE PROFESSOR with Electrical and Electronic Engineering Programme Area, University Teknologi Brunei (UTB), Bandar Seri Begawan, Brunei Darussalam from December 2014 to December 2020. He worked for Samsung Electronics/Samsung Advanced Institute of Technology, Hwasung/Gyeung, Korea as research staff/Member/Senior Engineer from 2011 to 2014. He worked as post-doctoral fellowship with
KAIST from 2010 to 2011. He has more than 60 articles in international journals and conference proceedings along with seven international patents.

Dr Rakib Uddin is a Senior member of IEEE, USA and Member of IET, UK. He got Korean government IITA full scholarship for his PhD programme from 2006 to 2010 at KAIST. He also got Korean Government Brain Korea 21 (BK21) fellowship for his post-doctoral research with KAIST, Korea. Dr Rakib Uddin received University Teaching as well as Research Excellence Awards in 2017 and 2019 at UTB, Brunei Darussalam