Domain Recognition By Border Observation In Dimension 1 & 2

*James Kouawa Tamgno, *Zacharia Damoue **Samuel Ouya, *Ahmed Kora
*eNOV/ESMT & LITA/UCAD, Dakar Senegal

Abstract:

The objective of this work, which was conduct at eINOV and Laboratory of Computer Science, Telecommunications and Applications (LITA) was to carry out the determination procedures to identify a domain by looking border. We proved that if well-defined signals are sent on the known edge \(\Gamma_0 \) of a regular field \(\Omega \) of \(\mathbb{R}^n \) (\(n=1, 2 \)), where prevail some phenomena modeled by partial derivative equations and that following a certain number of ow measurements on the same edge, knowing \(\int_{\Gamma_0} \frac{\partial u}{\partial n} g \, d\Gamma \) (where \(n \) indicates the normal external of \(\partial \Omega \)), it is possible to find a method which leads to the determination of \(\Omega \). The demonstration were made in the stationary case with dimension \(n=1, 2 \) and arbitrary form.

Keywords: Distribution theory, Transmission theory, Domain recognition, border.

I. INTRODUCTION

The recognition of a domain consists in finding the geometric shape of an object, knowing some of its physical characteristics. This concept is close to the concept of shape optimization introduced some thirty years ago and used in mechanics for the construction of solid and light objects [1]. In general, the criteria to be optimized are, for example, strength, efficiency, or radiated energy. These involve the solution of a system of equations with partial derivatives placed on an open space \(\Omega \).

While domain recognition is defined as a way of recognizing the geometrical shape of an object according to its characteristics, we found after our research that it was not easy or even easy for telephone operators to setup methods enabling them to: manage the interventions on possible disturbances on telecommunication lines and easily locate the domain or extent of a deposit or incident. The fields of application in which one can be brought to exploit the solutions posed by this kind of problem are varied.

Telephony Operators: determining the distance between a breakpoint and the known end of a domain represented by a cable telephone line. Determining the distance between a breakpoint and the known end of a domain represented by an optical fiber transmission line.

Mining Operators and Disaster Managers: determining the extent of an oil or ore deposit determining the extent of the impact of a disaster.

To justify the reasons for our research, in this article, we discuss the position of the problem, then we will present some mathematical concepts and some models of related problems. This in order to propose solutions of domain identification in dimension \(n = 1, 2 \).

II. POSITION OF THE PROBLEM

1. Excitation of a known edge \(\Gamma_0 \) of a domain

We consider a regular bounded domain \(\Omega \subset \mathbb{R}^n (n=1,2) \), \(c \in \mathbb{C}(\mathbb{R}^n(n=1,2)) \) with value in \(\mathbb{R}^+ \) and \(g \) a continuous function on \(\mathbb{R}^n(n=1,2) \). It is assumed that the phenomenon occurring in \(\Omega \) is modelled by a wave equation.

Given a domain in which there is a phenomenon modeled by partial differential equations, more particularly by the equation:

\[
\begin{cases}
-\Delta u + cu = 0 & \text{on } \Omega \\
|u|^\Gamma_0 = g \\
u|_{\partial \Omega \Gamma_0} = 0
\end{cases}
\]

(1)

We send well-determined signals to the edge \(\Gamma_0 \) modeled by \(g \) and measure the integral \(\int_{\Gamma_0} \frac{\partial u}{\partial n} g \, d\Gamma \) (where \(n \) denotes the exterior normal to \(\partial \Omega \)).

Question: knowing \(\int_{\Gamma_0} \frac{\partial u}{\partial n} g \, d\Gamma \), was it be possible to determine the entire domain \(\Omega \) ?

Before find an answer to this problem we will firstly remind some mathematical theories.

2. Related Mathematical Theories

2.1 Theory of distribution

Let \(T \) be a linear mapping from \(D(\Omega) \) to \(R \) (where \(D(\Omega) \) is the set of functions \(C^\infty(\Omega) \) with compact support on \(\Omega \)). The distribution on \(D(\Omega) \) is defined as any application \(T: D(\Omega) \rightarrow \mathbb{R} \) linear and continuous.

We denote \(\forall \varphi \in D(\Omega), \langle T, \varphi \rangle = T'(\varphi) \). \(D'(\Omega) \) is a set of distribution on \(\Omega \). Thus for every function \(u \) of class \(C^1 \), we defined the distribution \(T_u \in D'(\Omega) \), the dual of the functional space \(D(\Omega) \), define by:
\[∀ \phi \in D(Ω) \quad T_u(\phi) = \int_Ω \nabla u(\phi) dx \quad \text{and} \quad ∀ \phi \in D(Ω) \quad \langle \frac{∂}{∂x_i} T_u, \phi \rangle = -\langle T_u, \frac{∂\phi}{∂x_i} \rangle, \quad \text{for} \ i = 1, \ldots, n. \]

Similarly for each multi-index \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbb{N}^n \), we have:

\[∀ \phi \in D(Ω) \quad \langle D^\alpha T_u, \phi \rangle = (-1)^{|\alpha|}\langle T_u, D^\alpha \phi \rangle. \]

2.2 Principle of maximum

Theorem 1:

Let \(Ω \) be an open set of \(\mathbb{R}^n \) of class \(C^1 \), \(f \in L^2(Ω) \) and \(u \in H_0^1(Ω) \) such that:

\[∀ v \in H_0^1(Ω), \int_Ω \sum_{i=1}^n \frac{∂u}{∂x_i} \frac{∂v}{∂x_i} dx + \int_Ω a_0 uv dx = \int_Ω fv dx. \]

If \(a_0 \in L^2(Ω) \) and \(a_0 \geq 0 \) on \(Ω \) then \((u \geq 0 \text{ on } Γ_0) \) and \((f \geq 0 \text{ on } Ω) \)
\[\Rightarrow (u \geq 0 \text{ on } Ω). \]

III. WELL-DEFINED PROBLEM PATTERNS

1. Keeping the flows in a transmission medium

Considering a scalar quantity \(u(x) \) (temperature, chemical concentration...). By associating a flow (e.g. heat, matter...).

Whatever the integration volume \(ω \), the outward flow of \(u(x) \) of this quantity, \(q(x) \) is zero at equilibrium: \[\int_{∂ω} q(x). n_x ds = 0 \]

Applying the Green-Riemann formula [1] of flux divergence to it, we obtain:
\[\int_{Ω} \nabla q(x) dx = 0 \]

Assuming good regularity for \(q(x) \), we get a local version of this equation, since \(ω \) is arbitrary, \(\nabla q(x) = 0, \quad ∀ x \in Ω \).

Because of the independence of the integration volume of G. Demengel [2].

If one further assumes that this flow is a linear function of the gradient \(V_u \), and oriented in the opposite direction (flows often run opposite the gradient of a quantity), in most situations it is physically reasonable to assume that the flow is proportional to the gradient \(V_u \). We can then write that:
\[q(x) = -k(x)V_u u, \quad k(x) > 0 \] (Fick's law of diffusion, Fourier's law of heat conduction, Ohm's law of electricity conduction).

We obtain an equilibrium conservation law of the type
\[\nabla q(x) = 0, \quad k(x) > 0, \quad \text{we obtain the simplest of the elliptic equations, the Laplace equation which models the stationary phenomenon of conservation of flux on a transmission medium div}(V_u(x)) = 0, \text{which leads to} -Δu(x) = 0 \text{ (Laplace equation).} \]

This notion of flux conservation provides a mathematical model for equilibrium conservation laws in linear behavior, which is applied to the modeling of stationary phenomena in several fields of engineering sciences. Among others, we can cite by R. Dautray and J. L. Lions [3]:

- In the case of particle diffusion: \(u(x) \) represents the chemical concentration at position \(x \); \(k \) is called the diffusion coefficient; \(q(x) \) represents the chemical flux field; and the Laplace equation is called Fick's law.

- In the case of fluid flow in a porous medium: \(u(x) \) represents the pressure of the fluid at position \(x \); \(k \) is called the hydraulic conductivity; \(q(x) \) represents the flow field in the fluid and Laplace's equation is called Darcy's law.

- In the case of electron flow in a conductor: \(u(x) \) is the voltage at position \(x \); \(k \) is called the electrical conductivity; \(q(x) \) is the flow of electrical current; and Laplace's equation is called Ohm's law.

- In steady state: the temperature \(T(x) \) of a medium of uniform thermal conductivity, subjected to different temperatures at its edges, verifies Laplace's equation in the form -\(ΔT(x) = 0 \).

- In the static regime: the electric potential in vacuum also verifies Laplace's equation.

- In the same way, the gravitational potential between the planets, also verifies Laplace's equation.

Thus, many physical problems can be reduced to the search for a scalar field that we call potential and that we denote \(u(x) \) in dimension one, satisfying the Laplace equation. The first model of problem considered here and modeled by the Laplace equation could only find a solution if it is associated with limit conditions on each section of the boundary that will ensure that the problem is well posed.

The first model of the problem considered here and modeled by the Laplace equation can only find a solution if we associate boundary conditions on each piece of the boundary that will make the problem well posed.

2. Limit conditions associated with the Laplace equation

In general, in the Laplace equation, we look for the solution in an area of space \(Ω \). The edges of \(Ω \) noted \(∂Ω \) impose constraints: these are called boundary conditions. We usually distinguish, three types of boundary conditions:

- The value of the flux potential on the boundary \(∂Ω \). This is the case, for example, when we study the electric potential that prevails between different electric conductors subjected to known voltages. In this case, we speak of the Dirichlet boundary conditions.

- The value of the derivative \(\frac{∂u}{∂n} \) normal of the flux potential is fixed. We speak in this case of the Von Neumann conditions.

We can also impose these two conditions on the boundary \(∂Ω \). This is the Cauchy condition.

In short, the Laplace equation can only have a solution if we have specified both \(u|_{∂Ω} \) and \(\frac{∂u}{∂n}|_{∂Ω} = (\nabla_u u). n \) along the boundary. And from Green's formulation,
\[\int_{∂Ω} u \frac{∂u}{∂n} ds = \int_{∂Ω} (uΔu + νuV_u) dx = \int_{Ω} V_uV_u dx, \quad \text{because} \quad Δu = 0. \]

Thus according to the theorems of G. Demengel, P. Benichou [2], for any function \(g, h \in C(Ω) \), the problem defined by equation (2):
\[\begin{cases} -Δu = 0, & x \in Ω \\ u(x) = g(x), & x \in ∂Ω_1 \\ \frac{∂u}{∂n_x} = h(x), & x \in ∂Ω_2 \end{cases} \]

Equation which, provided with boundary conditions, is well posed and justifies the position of problem (1), with:
3. Wave propagation in a transmission medium (coaxial medium in free space, isotropic medium)

Given a portion of the transmission guide shown in Figure 1, Maxwell’s equations [6] in local form for any point inside the guide are written:

- Maxwell-Gauss \(\text{div}\vec{E} = 0 \)
- Equation du flux magnétique \(\text{div}\vec{B} = 0 \)
- Maxwell-Faraday \(\text{rot}\vec{E} = -\frac{\partial\vec{B}}{\partial t} \)
- Maxwell-Ampère \(\text{rot}\vec{E} = \mu_0\varepsilon_0\frac{\partial\vec{E}}{\partial t} \)

The substitution of these equations allows us to obtain the wave propagation equation valid at each point inside the transmission medium.

\[
\Rightarrow \Delta \vec{B} - \mu_0\varepsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2} = 0
\]

We are interested in the search for the solutions of the particular solutions of this equation in the form of progressive (stationary) waves, harmonic of pulsation \(\omega \), rectilinearly polarized and characterized by an electromagnetic field.

Let us consider the scalar function \(s(x,t) \) defined by:

\[
\frac{\partial^2 s}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 s}{\partial t^2} = 0 \quad \text{with} \quad c^2 = \frac{1}{\mu_0 \varepsilon_0}
\]

By posing \(s(x,t) = u(x)e^{-i\omega t} \), we obtain after transformation of the equation: \(u''(x) - ku(x) = 0 \), known as the Helmholtz equation with \(k = \frac{\omega}{c} \). In general, for the same medium, the Dirichlet and Neumann conditions lead to different spectra [2]. And according to the theorems of G. Demengel, P. Benichou [2], for any function \(g, h \in C(\Omega) \), the problem defined by equation (3):

\[
\begin{cases}
-\Delta u(x) + cu(x) = 0, & x \in \Omega \\
u(x) = g(x), & x \in \partial\Omega_1 \\u(x) = h(x), & x \in \partial\Omega_2
\end{cases}
\]

And one of the boundary conditions is well posed and justifies the position of problem (1), with

\[
\begin{aligned}
c & = k \\
\Omega_1 &= \Gamma_0 \\
\Omega_2 &= \partial\Omega \setminus \Gamma_0
\end{aligned}
\]

Note: the problem thus posed is also valid in dimension two, three, cylindrical and spherical.

IV. DOMAIN RECOGNITION IN THE LINEAR AND ORTHOGONAL REFERENCE FRAME

1. In dimension 1 : stationary shape

Given figure 2, if \(\Omega =]0,a[\) then then determining \(\Omega \) would be like determining a knowing that the 0 end is known.

It is assumed that the phenomenon is modeled by equation (4) below

\[
\begin{cases}
-u''(x) + c(x)u(x) = 0 & \text{pour } 0 < x < a \\
u(0) = 1 \quad \text{and} \quad u(a) = 0
\end{cases}
\]

with \(a \in \mathbb{R} \) et \(c \in C^0]0,a[\)

We also assume that \(c(x) \geq 0, \forall x \in \mathbb{R} \)

It is further supposed that \(u''(0) \) is given, then how do we find a (0<x<a) so that the problem is well posed?

Theorem 2: \(\forall c, a \) a positive function \(\in C^0(\mathbb{R}^n(\text{n = 1,2,3})) \) with values in \(\mathbb{R}^+ \), so the function \(g: a \rightarrow g(a) = u''(0) \) de \(\mathbb{R}^+ \) with values in \(]-\infty,0[\) is injective and strictly decreasing.

With this theorem, we show that a is uniquely determined.

Algorithm 1: determination of the \(a_i \) values of the domain \(\Omega \) (Figure 2.)

1. **Start**
2. **Consider a breakpoint**
3. **Successively browse database containing different pre-registered nodes (\(a_i \)) to know where a is located.**
4. **If \(a > a_i \) then \(g(a) < g(a_i) \)**
5. **Considering (\(a_i \)) (the first node of the known domain)**
6. **If \(g(a) > g(a_i) \) then \(a_i < a \) else \(a > a_i \)**
7. **Endif**
8. **Look for \(i_0 \in \{1,...,n\} \) such that**
9. **If \(g(a_{i_0+1}) < g(a) < g(a_{i_0}) \) then \(a_{i_0+1} < a < a_{i_0} \)**
10. **EndiF**
11. **EndiF**
12. **End**

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(a_2)</th>
<th>...</th>
<th>(a_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u'_1(0))</td>
<td>(u'_2(0))</td>
<td>...</td>
<td>(u'_{an}(0))</td>
</tr>
</tbody>
</table>

Table 1: Results of the values of \(a_i \) in dimension 1
2. In dimension 2: orthogonal reference frame

Let O be a known nonempty bounded open of \(\mathbb{R}^2 \) and of Lebesgue measure denoted mes(O), \(\Gamma \) be a nonempty part of the adherence \(\overline{O} \) of the open O. \(E_{\Gamma}(O) = \{ \Omega \subseteq O, \Omega \text{ bounded domain of class } C^2 \text{ with } \Gamma_0 \subset \partial \Omega \} \)

It is assumed that there exists a nonzero and positive function \(g_0 \) defined on \(\Gamma_0 \).

\[
\Omega \in E_{\Gamma}(O), \quad g_0 : \partial \Omega \to \mathbb{R} \text{ defined by } \quad g_0(x) = \begin{cases} g_0(1) & \text{si } x \in \Gamma_0 \\ 0 & \text{si } x \in \partial \Omega \setminus \Gamma_0 \end{cases}
\]

\(g_0 \) admits a bearing on \(\Omega \) belonging à \(H^2(\Omega) \).

For \(\Omega \in E_{\Gamma}(O) \), we say that u is a solution of the equation below from the problem posed.

\[
\left\{ \begin{array}{l}
-\Delta u + q(x)u(x) = 0 \text{ in } \Omega \\
u = g_0 \text{ on } \Gamma_0 \\
u = 0 \text{ on } \partial \Omega \setminus \Gamma_0
\end{array} \right.
\]

We define on \(E_{\Gamma}(O) \) the application \(\delta : E_{\Gamma}(O) \to \mathbb{R} \), such that \(\forall \Omega \) we associate \(\delta(\Omega) = \int_{\Gamma_0} g_0 \, d\Gamma \).

The fundamental problem in this part is to answer the following question:

Let \(\Omega \in E_{\Gamma}(O) \), does knowledge of \(\delta(\Omega) \) as stated in the problem posed allow us to determine \(\Omega \) ?

Figure 3. consideration of the domain \(\Omega \) in dimension 2

Theorem 3: OUYA and NIANE basic theorem [5] [6]

Let \(\Omega_1, \Omega_2 \in E_{\Gamma}(O) \) such that \(\Omega_1 \subset \Omega_2 \) then \(\delta(\Omega_2) - \delta(\Omega_1) > 0 \)

The proof of this fundamental result relies on the following preliminary lemmas:

Lemma 1: Let \(\Omega_1, \Omega_2 \in E_{\Gamma}(O) \) such that \(\Omega_1 \subset \Omega_2 \) then \(\partial \Omega_1 \cap \Omega_2 \neq \emptyset \) [9].

Lemma 2: Let \(\Omega \) an open a bounded open of class \(C^2 \) and \(\Gamma_1 \) an open non-empty part of its edge. If \(u \in C(\Omega \cup \Gamma_1) \) verified \(\left\{ \begin{array}{l}
\Delta u = 0 \text{ in } D(\Omega) \\
u = 0 \text{ on } \Gamma_1
\end{array} \right. \)

Lemma 3: Let \(\Omega \) an open a bounded open of class \(C^2 \). If \(u \in H^2_1(\Omega) \) et \(-\Delta u \in H(\Omega) \) then \(\forall \alpha \in \mathbb{R} \), \(u \in C^{1,\alpha}(\Omega) \).

Lemma 4: Let \(\Omega \in E_{\Gamma}(O) \) and \(u \) solution of (1) then \(u \in C^1(\Omega \cup (\partial \Omega \setminus \Gamma_0)) \) [9].

Lemma 5: Let \(\Omega \) an open a bounded open of class \(C^2 \) of edge \(\partial \Omega \) et \(q \in L^1(\Omega) \). Let B an open ball of \(\Omega \) such that \(B \cap \partial \Omega \neq \emptyset \), if \(u \in H^2(\Omega) \) and verify \(\left\{ \begin{array}{l}
-\Delta u + qu = 0 \text{ sur } \Omega \\
\frac{\partial u}{\partial n} = 0 \text{ sur } B \cap \partial \Omega \\
u = 0 \text{ in } \Omega
\end{array} \right. \)

Then the proof of theorem 3.

This theorem is the fundamental result on which is based the method we propose here to recognize the domain \(\Omega \) sought in dimension 2 stationary case, knowing the value of \(\delta(\Omega) \). This theorem generalizes to the determination of the domain for any form.

Algorithm 2: Describing procedure to determine values of \(\Omega_i \) (Figure 3)

1. Start
2. Considering
3. \(E_{\Gamma}(O) = \{ \Omega \subset O, \Omega \text{ bounded domain of class } C^2 \text{ with } \Gamma_0 \subset \partial \Omega \} \)
4. Considering \(\left\{ \begin{array}{l}
u_i|\Gamma_0 = g \geq 0 \\
u_i|\partial \Omega \setminus \Gamma_0 = 0
\end{array} \right. \)
5. Following the iteration on i,
6. If for any \(\delta : E_{\Gamma}(O) \to \mathbb{R} \), the value of \(\delta(\Omega_i) = \int_{\Gamma_0} \frac{\partial u}{\partial n} g_0 \, d\Gamma \) exist then application of the algorithm developed in dimension 1.
7. Determination of \(\Omega \)
8. End

Table 2. Results of different values of \(\Omega_i \)

<table>
<thead>
<tr>
<th>(\Omega_1 \cup x_1)</th>
<th>(\Omega_2 \cup x_2)</th>
<th>…</th>
<th>(\Omega_n \cup x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta(\Omega_1))</td>
<td>(\delta(\Omega_2))</td>
<td>…</td>
<td>(\delta(\Omega_n))</td>
</tr>
</tbody>
</table>

V Conclusion

The study that we carried out made it possible to reach results allowing to propose algorithms to estimate and an entire domain by sending specifics signals on the border. In this article we extended the work cylindrical and spherical shape. This results are applicable to the domain of telephony, transmission over optical fiber, electricity, determination of overall extension area of oil or minerals field…

To achieve these results, we used Sobolev’s theories, the formula for variation of variables, the green formula, the principle of the maximum for existence and the uniqueness of the solutions, Reisz theorem, Samuel OUYA and NIANE theorem and many other theorems. The excitation signals of the phenomena that we proposed in dimension 1 and 2, thus leading to justify that our problem was well defined and posed. In stationary and orthogonal references frames we have shown under certain conditions that the signal sent outside of \(\partial \Omega \), leads to the determination of an algorithm allowing to approach and to approximate a domain \(\Omega \). In perspective, it will be interesting to assume that the domain \(\Omega \) is governed by a non-stationary phenomenon, thus to study the determination of the domain in the eventual area.

REFERENCES :

Dr. James Tamgno Kouawa, As a senior lecturer at ESMT, I obtained my Ph.D in May 2014 at University Cheikh Anta Diop of Dakar. My researches focused on Promotion of African's languages and dialects and Contribution to A Wider Accessibility of ICT, by Circumventing Language Barriers and Lessening the Impact of Illiteracy or Disability. Previously I have gotten a M.Sc. in Engineering Science from University Cheikh Anta DIOP of Dakar, studied numerical analysis and mathematics at the University of Yaoundé, and worked as a research scientist at ESMT (Multinational High School of Telecommunication) of Dakar.

Dr Zacharia DAMOUE is a teacher-researcher at the Multinational Higher School of Telecommunications (ESMT) in Dakar. He has done extensive work on the telecommunications access network part. As such, he has extensive experience in fiber optic and optical free space networks.

Pr. Samuel OUYA, is currently the Director of Computer, Network and Telecom Laboratory (LIRT) at University Cheikh Anta DIOP of Dakar. He was from 2013 to May 2017 the first Director of Infrastructure and Information System of the first virtual university of Senegal (UVS). Holder of a Thesis in Applied Mathematics from the Gaston Berger University of Saint-Louis in Senegal and a Telecommunications Thesis from the Cheikh Anta Diop University (UCAD) in Dakar-Senegal, he is interested in Applications of innovative telecom services to virtual organizations.(Based on document published on 10 March 2021).

Pr. Ahmed D. KORA is IEEE senior member. He is graduated in ICT Engineering in 2003 from “Ecole Superieure Multinationale de Telecommunications” (ESMT), Dakar, SENEGAL. He received his Ph.D. degree in telecommunication from the University of Limoges, France, in 2007. He is promoted as full professor by the regional accreditation institution (CAMES) and currently the Director of Teaching, Trainings and Research at ESMT. His research area covers QoS/QoE, network radio coverage, fiber optic transmission system, communication and networks system architecture, open network management solutions, universal access, low cost IT systems for development, etc. (Based on document published on 9 April 2020).